Angiotensin II, a unique vasoactive agent dissociates myosin light chain phosphorylation from contraction
نویسندگان
چکیده
Angiotensin II (100 nM) induced bi-phasic increases in cytosolic Ca2+ level ([Ca2+]i) through the activation of angiotensin II type 1 receptor. Pharmacological examinations using 10 µM verapamil, 30 µM La3+, and 1 µM thapsigargin indicated that the first phase of the [Ca2+]i-increase was mediated by Ca2+ release from sarcoplasmic reticulum (SR) and Ca2+ influx independently of voltage dependent Ca2+ channel (VDC). In contrast, the second phase of [Ca2+]i-increase was mediated by Ca2+ influx through VDC. Although both [Ca2+]i and myosin light chain (MLC)-phosphorylation at the first phase was apparently exceeded the threshold for contraction as estimated by high K+-induced responses, there was no appreciable contraction, indicating the dissociation between MLC phosphorylation and force during this phase. In contrast, the second phase of [Ca2+]i was associated with the increases in both MLC phosphorylation and force. These results suggest that angiotensin II is a unique agonist which dissociates MLC-phosphorylation from muscle force during the Ca2+ releases from SR.
منابع مشابه
Neuropeptide Y stimulation of myosin light chain phosphorylation in cultured aortic smooth muscle cells.
Neuropeptide Y (NPY) is released from an extensive network of postganglionic sympathetic perivascular neurons. NPY has been shown to affect vascular tone postsynaptically by 1) directly stimulating contraction; 2) inhibiting vasorelaxation; and 3) potentiating contraction elicited by exogenous vasoconstrictors. The molecular mechanisms mediating these effects of NPY are undefined. Therefore, we...
متن کاملAtrial natriuretic peptide inhibits the agonist-induced increase in extent of myosin light chain phosphorylation in aortic smooth muscle.
The effect of atrial natriuretic peptide (ANP) on angiotensin II- and histamine-induced contraction and muscle light chain phosphorylation was examined in strips of rabbit aorta smooth muscle. Preincubation of strips with 10(-7) M ANP prior to addition of either agonist inhibits both the increase in extent of myosin light chain phosphorylation and the contractile response to either 5 x 10(-8) M...
متن کاملA highly sensitive technique to measure myosin regulatory light chain phosphorylation: the first quantification in renal arterioles.
Phosphorylation of the 20-kDa myosin regulatory light chains (LC(20)) plays a key role in the regulation of smooth muscle contraction. The level of LC(20) phosphorylation is governed by the relative activities of myosin light chain kinase and phosphatase pathways. The regulation of these two pathways differs in different smooth muscle types and in the actions of different vasoactive stimuli. Li...
متن کاملNonmuscle myosin is regulated during smooth muscle contraction.
The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and ...
متن کاملMyosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation
The phosphorylation of regulatory myosin light chains by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK) has been shown to be essential and sufficient for initiation of endothelial cell retraction in saponin permeabilized monolayers (Wysolmerski, R. B. and D. Lagunoff. 1990. Proc. Natl. Acad. Sci. USA. 87:16-20). We now report the effects of thrombin stimulation on human u...
متن کامل